NASA TECHNICAL NOTE

NASA TN D-5459

q

LOAN COPY: RETURN TO
AFWL (WIOL-2)
KiRTLAND AFB, N MEX

A UNIFIED TREATMENT
OF LUNAR THEORY AND
ARTIFICIAL SATELLITE THEORY

by William A. Mersman

Ames Research Center

Moffett Field, Calif.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION <« WASHINGTON, D. C.

* OCTOBER 1969

WN ‘gdV) AHVHEIT HO3L

PR



TECH LIBRARY KAFB, NM

IERNCY RN

0132106

1. Report No. 2. Government Accession No. 3. Recipient's Cotalog No.
NASA TN D-5459

4. Title and Subtitle 5. Report Date

A UNIFIED TREATMENT OF LUNAR THEORY AND ARTIFICIAL October 1969
SATELLITE THEORY

6. Performing Orgonization Code

7. Author(s) 8. Performing Organization Report No.
William A. Mersman A-3388

9. Performing Organization Name and Address 10. Work Unit No.
NASA Ames Research Center 129-04-01-01-00-21

Moffett Field, Calif. 94035
’ 11. Contract or Grant No.

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address

NATIONAL AERONAUTICS AND SPACE ADMINISTRA TION
Washington, D. C., 20546

TECHNICAL NOTE

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

Lunar theory and artificial satellite theory are treated by a unified method that is a generalization of the
von Zeipel procedure. The technique of separation of variables is used to generate a single canonical transformation
that eliminates the time and all the angle variables from the Hamiltonian. The validity of the method is established
and the calculations are carried far enough to illustrate the techniques involved.

17. Key Words Suggested by Author 18. Distribution Statement
Lunar theory e -
Artificial satellite theory Unclassified - Unlimited

Canonical transformations
Generalized von Zeipel method

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22, Price*

Unclassified Unclassified 36 $3.00

*For sale by the Clearinghouse for Federal Scientific and Technical Information
Springfield, Virginia 22151



A UNIFIED TREATMENT OF LUNAR THEORY
AND ARTIFICIAL SATELLITE THEORY
By William A. Mersman

Ames Research Center

SUMMARY

Lunar theory and artificial satellite theory are treated by a unified
method that is a generalization of the von Zeipel procedure. The technique of
separation of variables is used to generate a single canonical transformation
that eliminates the time and all the angle variables from the Hamiltonian.

The validity of the method is established and the calculations are carried far
enough to illustrate the techniques involved.

INTRODUCTION

The theory of artificial satellite motion has been developed in recent
years by methods that had not previously been considered applicable to lunar
theory. The problems appear quite different, mathematically, because of the
explicit appearance of the time in the lunar problem.

In the present paper the familiar von Zeipel procedure is generalized in
two respects. Explicit dependence on the time is permitted, in a certain
restricted form, and then the time and all the angle variables are removed
from the Hamiltonian by means of a single canonical transformation. This
generalization is capable of solving the complete lunar problem far more effi-
ciently than the older methods of von Zeipel or Delaunay. It is then shown
that this method can be applied directly, in a simplified, degenerate form, to
the artificial satellite problem.

The familiar Delaunay variables are used, with one modification. The
longitude of the node is measured from a moving, rather than from an inertial
reference direction. For lunar theory the reference direction is that of the
sun, for artificial satellite theory, it is the meridian of Greenwich. This
device removes the explicit time dependence from the satellite problem, and
drastically simplifies the lunar problem.

The generalized procedure is presented in the next section, and its
application to lunar and satellite theory follow in that order.



Cn,m>
Sn,m

SYMBOLS

semimajor axis G
eccentricity H
true anomaly I
argument of perigee Jn

longitude of node from moving

reference line L
gaussian gravitational M
constant
Py
mean anomaly
p."
dimensionless ratio of mean
motions R
mean motion of moon or
satellite S
angle variable
Tn,m
action variable
W
geocentric distance
X,Y,Z
time
8,9
eccentric anomaly
¥
action variable
T
angle variable
€
earth-moon barycenter
6
dimensionless coefficients in 2
tesseral harmonics
. A
zonal harmonic
. . u
new Hamiltonian, mass of
earth v

old Hamiltonian

Vua(l - €?)

G cos I
inclination angle

dimensionless coefficients in
zonal harmonics

Yua

mass of moon

Legendre polynomial
associated Legendre function

equatorial radius of the
earth

determining function, mass of
sun

tesseral harmonic
determining function
decomposition types
solar factors

1 - cos 1 3
longitude of sun's perigee
eccentricity of sun's orbit +
geocentric latitude
mean anomaly of sun

geographic longitude

S

gravitational parameter

mean motion of sun, spin
velocity of earth



) distance from sun to earth-moon Y elongation of moon
barycenter
Q longitude of node from inertial
o true anomaly of sun reference line

THE GENERALIZED VON ZEIPEL TRANSFORMATION

Recent applications of the von Zeipel transformation have been restricted
essentially to Hamiltonians in which the time does not occur explicitly
(refs. 1 and 2). When it does occur, it is formally removed by the artifice
of adjoining an additional pair of canonical variables (ref. 3, pp. 530-531,
and ref. 4). A generalized method is developed here that is applicable to
certain problems involving a time-dependent Hamiltonian. In the case of lunar
theory this permits many of the solar terms to be expressed in closed form,
thereby avoiding certain Fourier series expansions that frequently complicate
the problem unnecessarily.

Consider the canonical system

dxj  oF dyj  oF

dat "3y, dt T Ty

with "action variables" x = (x;, Xy, X3) and "angle variables"
y = (yl, Y,» y3). Let the Hamiltonian be of the form

F = F(x, y, A)

where ) (an angle) is a linear function of the time, with v = dx/dt a
constant. This is the only form of time-dependence that will be considered.
Now let q = (q,, 9,, q3) and p = (p;, P,, P3) be new canonical variables

defined by the implicit transformation equations

W(gq, vy, A)

<. = Mg, y, N)
1 ayi

with the "determining function,'" W, given by

W=oq;y; *+5(q ¥y, M)



(Einstein's summation convention will be used throughout this paper: a
repeated subscript is to be summed over its range.) Thus, in vector notation,

X = q+ Aq

y =p+ 4p

with the increments having components given implicitly by

- 93S8(q, y, A)
(8q); ————55?7————

__358(g, ¥, A)
(Ap)i_ aqi

[}
o)

Expanding the right member of the last equation in a Taylor series near Yy
gives

3S A 32s
op). =-2500 P )

1 33s
i T B 3, Bpj (Ap)j T 209

Ap) . (A

This can be solved iteratively to any desired degree of accuracy, if S
and its derivatives are assumed small:

First order: (4p); = - gg_
i
Second order: (4p): = - S _ 378 (. 85 >
. °q; 994 apj 99
, ) __3s 3°s 3s 3%s 38
fhird order: (*P)i = - 3, ~ 3q; op; 6 3q. ' 9q, 8p, oq >
i M j j j k "k

1 3% S \ [ 3S
2 qu Bpj apk qu qu

3 8?8 3S  _ 93°S 3?25 39S
op; op; Bpj aqj ap; Bpj qu 9Pk qu

Similarly,

(AQ)i =

338 3S 23S

+ 1
2



Thus the equations

X q + Aq

y =p + 4p

with Aq, Ap given above, constitute an explicit solution of the implicit
transformation equations.

Now, q and p are canonical variables:

daj  3E dpj SE

dt  ~ 9p; ’ dt 3q;

with the new Hamiltonian, E, given implicitly by

OW(q, ¥, A 3S(q, ¥y, A
Ezp(x,y,x)_,;qa_{_hp_vi(gﬁﬂ)

(ref. 5, ch. 6)

If the right member is again expanded in a Taylor series and the explicit
forms of Aq and Ap are inserted, an explicit representation E(q, p, A} is
obtained. Successive differentiations with respect to p can be used to
yield the symmetric equation

L1 8% 3s 38 1 3% 938 35 38
2 api apj aq; qu 6 9p; Bpj 8pk 3q; aqj 3q;

9E 35
api aqi

E(q, p, A) +

3S  aF 3S 1 32F 38 S

=F(q,P,>\)‘\)_“+ t 5
9A aqi api 2 qu aqj api Bpj

L1 33F 3S_ 35 3S
6 9q; aqj L 9p; Bpj 9Py

and only the new variables q and p appear.

Now let n be the mean motion of the body being studied (moon or
satellite in the present paper) and let m = v/n be a small quantity (i.e.,
m << 1). Introducing series expansions



F = Fk
=0

Aq = z.o: Akq
k=1.

with the subscript, k, denoting O(m

E-3 e s-3s
k
k=0 k k=1
AP=EAkP
k=1
k), permits the separation of the equa-

tions according to order of magnitude, that is, according to powers of m.

Thus, the explicit transformation equations become

(A2p)

(A3P) i

and so forth, for

- qu

Ap, with analogous equations for

3S1
Sa;
3S,
aqi
9S54

3257 9S;
+
qu Bpj aqj
928, 8S,
qu apj

aq -
%
328 9%,

2
325, 23S,

99; 3p; 99

+

328,

- 3q Bpj qu 3py 3qy

1 %y 351 358,
2 394 9pj 9pk 393 99y

Aq.

The equation for the Hamiltonian separates into the 'von Zeipel

equations'':
Ey = Fo
+ —_—
8p; 993 ' 9q; 9p;
2
I 3E, 95, . 9E; 95, L1 3°E, 95y 353
2 7 .
ap; 943 op; aql 2 9p; apJ Bql aqj
9S7 9Fy 8Sp  9F; 3S; 1 82%F, 3S; 8S;
= Fz -V + + ~2—

+
dA 99 Bpi 3q; 9p;

qu qu op; 9P

J



3B, 8S;  3E, 35, BE, 3S, 9%2E,  9S; 8S, 1
E, + + + + + =
3 3p; aqi ap; °qj Bpi aqi api apj qu aqj 2

92E; 3S; 85

pj 9py 993 9q

j

1 3 Eo 9S3 95 381
6 Bpi Bpj opy 995 aqj 99y

88, _ 3Fp 883  3F; 88, 3Fp 38y 32Fp  9S7 3S,
+ +

-+
A aqi Bpi aqi ap qu Bpi qu aqj api Bpj

= F3 -V
i

9%F, 9S; 3S;
%q; 995 op; p

33F, 3S; 98S; 23S,
aqi aqj aqk Bpi Bpj apk

+_],‘_ +l.
2 6

j
and so forth.

It may be remarked that this representation of the transformation
equations and of the Hamiltonian explicitly in terms of the new variables ¢
and p is not the usual practice. Brouwer (ref. 1) uses the mixed set of
variables q and y.

In references 1, 2, and 4 the von Zeipel transformation is used succes-
sively to eliminate only one angle variable, p;, at a time. In the applica-
tions in the present paper, a single transformation will be exhibited that
eliminates X and all three angle variables simultaneously. Thus, the par-
tial derivatives disappear from the left members of the von Zeipel equations,
giving simply the components, Ej, explicitly. The equations will be used here
only in this simplified form.

These equations can be regarded as a simultaneous set of partial differ-
ential equations for the components, Sy, of the determining function, S. A
technique that is similar to the classical one of separation of variables will
be used to construct a recursive set of equations, each of which is a linear,
first-order partial differential equation with constant coefficients. Speci-
fically, the angle variables, p, will be the Delaunay variables (7, g, h),
respectively, the mean anomaly, argument of perigee, and longitude of the node.
Each term, Sy, will be decomposed into the sum of three terms

Sk = Xk + Yy + Zg

where

X a periodic function of 7

Y a periodic function of g, h, and A, with I absent and the sum, h + A,
excluded

Z a periodic function of two variables, g and the sum h + X, with 7
absent



Similarly, each term, Fy, of the Hamiltonian will be decomposed into the sum
of four terms.

F = XFk + YFk + ZFk + EFk

k
with the prefix E denoting a function that is independent of X and all the
angle variables (Z, g, h), the other prefixes having the meaning assigned
above. The calculations will then proceed according to the scheme:

Order O: E,

Order 1: Eq X3

Order 2: E, X9 Y,

Order k > 3: Ex Xx Yy 4 Zx_o

This is reminiscent of the schemes of Brouwer and Hori (refs. 1 and 2)
which yield short-period terms to a higher order than long-period terms.
Later it will be shown that the components X, Y, Z are obtained as follows:

The component Xj will be obtained by simple quadrature:

Xk = ./qunction of type X)dil

The component Y will satisfy an equation of the type

oY oY
5 - 3 - £(0)
6 = ix + jh + kg, i#3j,1i, j, k integers
Clearly, the solution 1is
1
- 5 Jeoae

The component Zj will satisfy an equation of the form

3Z a7
£ §§‘+ n 3R T £(6)
6 =ig + jh + A}, i, j dintegers

and the solution is



N S
€1 + nj

z O

where & and n are functions of the action variables (L, G, H) and it will be
proved that the denominator never vanishes, so that no critical case occurs in
the lunar theory. 1In satellite theory, of course, the case of critical
inclination has to be excluded.

Lunar theory will be treated first, and then it will be shown that
satellite theory is simply a degenerate case.

It is clear from the preceding discussion that the first task is to
obtain a series representation of the Hamiltonian, in terms of the Delaunay
variables, and then to exhibit the decomposition by type (X, Y, Z, E). This
will be accomplished in the next section.

LUNAR THEORY

Development of the Hamiltonian

The lunar theory to be developed here is that of the motion of the moon
about the earth, under the assumption that the earth-moon barycenter (B) moves
about the sun in a Keplerian orbit, the plane of which will be referred to as
the ecliptic. Earth, moon and sun are regarded as point masses, and planetary
perturbations are ignored. The Hamiltonian for the classical Delaunay
variables (L, G, H) and (7, g, ) is

2 2
F' = %17—+ ESS 2P, (cos ¥)

k2S E - M
+ —

pu E+ M

r3P3(cos ¥)

(see ref. 3, pp. 271 and 291), and L
the law of cosines of spherical
trigonometry gives (see sketch):

cos Y = cos(f + glcos h
- sin(f + g)sin h cos I -

where h 1is the elongation of the
node, measured from the sun:

h=Q - (T+ ¢)



If h is used, rather than &, as the conjugate variable to
Hamiltonian is simply

d¢
- T et
F=F'" 4+ H Tt
since
dh do d¢ _ _9F' 93 d_¢.H>_ 9F
dt ~ dt ~dt =~ 3H oH \dt - T BH
and

H, then the

This choice of variables makes ¢ independent of the time, so that solar
effects enter only via p, the distance from the sun to the earth-moon bary-
center. Many Fourier series expansions and multiplications are thus avoided.

The usual methods of the theory of elliptic motion (ref.

3, ch. 2, and

ref. 6, ch. 3) can be used to obtain the solar factors in closed form and in

series. The only ones needed here are

L va e
2
k—% = v,(1 + B)
P

where v is the sun's mean motion and

vV = VvV v = .
2 12 1 S+ E+ M €2)3/2

(1 -
§ = éLEHi—Al'= ;Z; 8 cos k A

_d(¢ - A + € sin ¢) N
B = =R =](Z;Bkcosk>\

and Sy, B, are power series starting with eK; for example,

oy
w

61 = 2¢ -
5
62 = 7€ - §Z €

10




B1 3€—-§-—E
_9
By = 7—6 - —— 7 ., .

To obtain the desired form for the lunar factors, write
cos P = cos(f + g + h) + v sin(f + g)sin h
where

H
Yy=1-cos I =1 - T
Then the Legendre polynomials can be written as

n
P (cos ¥) = > Pp kyk
k=0 ’

where Py is a trigonometric polynomial in £, with coefficients that are
>

trigonometric functions of g and h; for example,

P, o = %—+ %—cos(Zg + 2h)cos 2f - %'sin(Zg + 2h)sin 2f
3 .. 3 . . 3 . .
P2,1 = - 5 sin h + % sin h sin(2g + h)cos 2f + 5 sin h cos(2g + h)sin 2f

pz’2 = g—sin2 h - %—sin2 h cos 2g cos 2f + %sin2 h sin 2g sin 2f

The Hamiltonian can now be written as a series

F = i: Fx
where k=o
2
F o= X _
(o] 2L2
F]_ = vH N

- 2
F, VeH + v,r Pz,o

]
w
1]

2 2
vy BT Py o+ VYT P2,1
L

and so forth, under the assumptions that e = 0(m), v = O(m).

11




Finally, to separate each term by type (X, Y, Z, E) note that the true
anomaly, f, enters in the form
r cos kf, rM sin kf, 0<k<n
and these can be expressed as trigonometric polynomials in u, the eccentric

anomaly, the coefficients being functions of a and e (see refs. 2 and 4).
For example,

r? = a2(1 + %—e2> + Ag

2

cos 2f a?e? + B 5

"
N

"
(@]

sin 2f

where

>
n

e? cos 2u]

N

2 1
o a [—2e(§-e + COSs u) +

o az[-Ze(%-e + Cos u) + (1 - %—e2>cos 24]

a®/1 - e? (-2e sin u + sin 2u)

=]
i}

Co

and each of these is periodic in 1, the mean anomaly, with vanishing mean
value (type X).

The desired representation of the Hamiltonian, then, is

F u? T E
= e
0= 7 yp
F; = vH Type E
F.: XFy = = vo[Ay + 3B (2g + 2n) - 3C, sin(2g + 2h)]
91 2 = 7 v2|Aq + 3B cos(2g - 3C, sin(2g

YF, = véH + %?—vzazez cos(2g + 2h)

ZF, = 0

12



F3: XFy = B - XFp + %sz sin h[-Ay sin h+B, sin(2g + h) +C, cos(2g+h)]
15 2.2
YF3 = Tg V2B 2%e [cos(2g + 2h + X) + cos(2g + 2h - A)]
3 5 3 5 5
AT @_+ 5 e )cos 2h - 5 € cos(2g + 2h)| + B - EF,
ZF4 = %?—yvzazez cos 2g
3 5 3
EF; = - 7 YV22 (l t 5 ez)

. = 15 242 15 2y .22
Fy: ZFy, = 16 v,B,a%e” cos(2g + 2h + 2A) - g Y Vvpae” cos 2g

EF, -2— yzvzaz (1 + % e2>

The X and Y components of F, will not be given, since the analysis will

not be carried far enough in the present paper to require them.

It may be remarked that F3 contains the term v26r2p2 o» which yields,
among others, the term ’

%?-vzsazez cos(2g + 2h)
and here the series for B must be used, giving
15 2 0
g Vea‘e Bl[cos(Zg + 2h + A) + cos(2g + 2h - A)]

+ %g-vzaZeZBz[cos(Zg + 2h + 2)) + cos(2g + 2h - 2))]

+ .

The first line has been included in YF3, and the first term of the second
line is included in ZFy. There are also higher order contributions that must
be properly assigned in a complete theory.

Solution of the Lunar Problem

The lunar problem can now be solved by means of the generalized
von Zeipel transformation from the old variables

x = (L, G, H), y = (Z, g, h)

13



to the new variables

q. = (r, G, H)’ p = (z_’ -g—’ H)

where the bar notation is used to emphasize the fact that the new variables
are the mean values of the old ones, in the usual astronomical sense. That
is, the difference between each new variable and the corresponding old one is
a sum of terms each of which is a periodic function of the time with vanishing

mean value.

Since the new Hamiltonian contains only the action variables q, the new
canonical equations are

so that the q's (L, G, H) are constants. Then

-— = - EE—-= constant
qu

and the p's (I, g, h) are linear functions of the time.

Since the von Zeipel equations connecting E, S, and F contain only the
new variables, it 1s convenient to omit the bars and write simply (L, G, H)
and (I, g, h) during the calculations. Of course, the bars must be restored
before the explicit transformation equations and the new canonical equations
can be written,.

It is convenient to divide the discussion into two parts, since the
equations of order 0, 1, and 2 are degenerate. It is also possible to omit
many of the algebraic details by recalling that, for example, Xy is the only
part of Sy that contains 7, and that

3F, 97y 3Zy

58 sn - U an - O

since F; = VH and Zy contains h and A only via their sum, h + A.

Initial stages.- The first von Zeipel equation is simply

UZ

E; = F, =
o] o 212

and the second is
8Fo 03X, w2 83X,
Br=Fr v g5 =V - 57

which separates immediately into X; = 0, E; = vH, since F; is entirely of
type E.

14



The equation of second order is, in view of the result just obtained,

2 3X 3y, 8y
g, B o
Bp = Fo -5 * (éh ) )

Since ZF, = 0, this equation separates into three:

u23)(
3357 = XF2
Y 3Y
1 _ 1 =
v (ax ah ) YF2
E2 = EF2
and integrating gives
1 L3 .
Xo =7 Vv2 =5 [A; + 3By cos(2g + 2h) - 3C; sin(2g + 2h)]
u
15 2.2 .
Yy = (¢ - MH - 16 V127e sin(2g + 2h)
_ 1 2 3 2y .1V L 212
Ez—z—\)za<1+'§e)—8;?(5L—3GL)
where
Ay = A, dl = fa (1 - e cos u)du
= 253_ - 3 2 o __]._3 . :}
= a [(4 e 2e>311r1u+4 e sin 2u 1Ze sin 3u
B1=fBOdZ
= a2[(5 63 - 5 &)si 1,1 1.3 1 ]
= a [(4 e > e>51n u + (2 + 7 e‘)sin 2u + 12 e g ©)sin 3u
¢, = fc, at

n

a2/l - e2 [ (—-e + cos u) - %—(1 + e2)cos 2u + %—e cos 3u]

Following Hori (ref. 2) the term (1/2)e 1is added to cos u to
annihilate the mean value with respect to Z.

The general case, order k > 3.- When the explicit equation for the new
Hamiltonian was separated according to the order k, it was implicitly assumed
that the order of a term is not affected by the process of differentiation.

15



However, the present Hamiltonian, beginning with F3 contains the factor
vy =1 - (H/G), so that differentiation may "lose" one power of vy, thereby
reducing the order. For example, the terms

F3 3Y ana P32
9y oG oy ©oH

are of second order. When this is taken into account, the general equation,
of order k can be written in the form

N Vs v<aYk—1 i aYk-1> L (F, L 5 oy Pkes
k Y 3h R 56 T 3y 3G/ Jg
5F,  OF 37
2 3 9y k-2
Y\ T 5y aH> st

where Q is a sum of terms involving Fjp and previously computed quantities.
The currently undetermined components Xj, Yy 1> Zyx_, occur only in the terms
exhibited here explicitly.

Recalling the separation of F, and F3 into components, it can be seen
that the terms

<axp2 BXF 3Y> gy <3XF2 BXF, 3Y> 82y _,

3G 3y 3G ) g 30 * 5y oH/  ah

are entirely of type X, while the terms

<8YF2 , AYF, 3Y> ks (aYFz 3YF, 31) 97k -5

3G 5y 3G/ og 3H ' 3y 8H) @h

are entirely of type Y. Since ZF3 contains the factor e’ as well as

Yv,, the terms containing 3ZF3/3y and Zy_, can be regarded as of order

k + 1, under the assumption that e? = 0(m); that is, these terms are deferred
to the next stage. Since ZF, = (3EF,/3H) = 0, the Z component of the
equation for Eyx becomes simply

oEF JEF oZ oEF 0Z
2 3 9 k-» 30 k-2
(———— ————-—1> + et Lk = 0

36 8y oG/ og 3y 9
Inserting EF, and EF3 gives

3Zk_p 92
E og *n 5h 2Qk

16




where

If the typical term of ZQ) has the form £(8) with 6 = ig + j(h + )), then
the corresponding term in Zy_,, is

ff(e)ds

€1+nJ

The only case that can produce a small denominator is j = 2i, giving
£i+n'=-§-\)ig—i—§e2+y(1+§-e2)]
J V276 |2 2

If y vanishes, the orbit plane coincides with the ecliptic, the node loses
its identity, and g, h, occur only in the sum g + h. Hence, terms of type
Z must contain the single argument, g + h + A, so that j = i and the small
divisor does not occur. Hence, the divisor never vanishes.

Once Zk-» has been obtained, the equation for Ex separates into three:

2
E—- Z = sum of terms of type X
LS
Yy oY
\ < ai L. k l> = sum of terms of type Y

1}

Ex = sum of terms of type E
and these can be integrated by quadrature.

The equations of order 3 and 4.- If the notation of the preceding section
is used, the known terms of order three are

oX 9F, OF Y 3F, OF aY
- _ % 2 3 av) 2ha ( 2 3 a_y) 1
Qg = Fg +v ) ( ) 5g T\3H T3 5h

First consider the terms involving Fj3 and Y;. These can be put in the form

1 9F;3 (aYl 3Y1> Y 9F3 3Y;
Ga3ay \og ~oh /G oy 9g

17



by noting that

- H Oy _H _1-%

y=1-5 %G g2 G
9 1

H=G6(1-v) z5=-%

The second term, due to the reappearance of the '"lost" vy, is of fourth order,
and hence can be deferred to the next stage (this is true at every stage).

The first term vanishes, since Y; contains the single argument. g + h (this
does not occur at later stages).

Next consider the term
—= —— = - =2 v,6a%e? cos(2g + 2h)

Again the series expansion for the solar factor § must be used, giving

- %%—vzélazez[cos(Zg +2h + 1) + cos(2g + 2h - )]
- Tg'Vzaza e’[cos(2g + 2h +2)) + cos(2g + 2h - 2)}]

The terms on the first line are of third order, while the remaining terms
can be deferred to later stages. The treatment of the other terms in Q; is
straightforward. In particular, the only term of type Z 1is

2

ZQ; = ZF; = %;-yvzaze cos 2g

and the general theory of the preceding section, with i = 2, j = 0, gives

§-YGe2 sin 2g

8 -
1 , 1 52)
1+ T e - §~y@.+ 5 €

Zl=

Expanding the denominator by the binomial theorem, with

_ 1 3 2 1 -
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gives

Zy] = g- Ge? sin 2g
and the remaining terms
2+t v g3 e L)

can be assigned to the higher stages 2Z,, Zj3,

The process of inserting Z; in the terms not used in its calculation is
straightforward. In particular, the deferred terms involving J3ZF3/3y become

8ZF3 gy 3Z1 75 -
5y 3G 3g _ 64 Yvaa“e (1 - v)(1 + cos 4g)

thus making contributions of types Z and E to the fourth-order equation.

The rest of the procedure is straightforward, provided that wherever H/G
occurs it is to be replaced by 1 - y and the terms with the extra vy are
reassigned to the next stage. Then the third-order equation yields

3
X3 = BX, + %—yvz EE—sin h(l + %—ez cos Zg)[—Al sin h
i
+ By sin(2g + h) + Cy cos{2g + h)]

[
Vo Eg'[Bz sin(2g + 2h) + C, cos(2g + 2h)]
u
3
Vo L_.[%.yezG cos 2g - lé—vlazez cos(2g + Zhi]

u? 8

x 5 2B 2 2h 3 81 Gina 2h:]
36 ' 33 coslZe + 2h) - 3 g5 sin(2g + 2h)

v1a2(1 + g-ez)(¢ - A + e sin ¢)
vi2ate? ng_ [sin(Zg + 2h) + 751- sin(4g + 4h)]
202 [ 1 .
v1(8; - Byla“e Eln(Zg + 2h + 2) + 3-51n(2g + 2h - A)
13 , 25

Yv1a2(1 - g et if-e“)sin 2h

]
oo

FoN
N
mL“

1

+ {%—~yv1a2e2(2 - e2)sin(4g + 2h)

yviaZe2(2 - e2)sin(2g + 2h) + %% yvlazez(} + %—eé)sin(Zg - 2h)

(93}

19



where
By =fB1 d? and C2 =fC]_ dZ

Partial results from the fourth stage are

Z, = §-Ge2(e - 85 + 612 - 8;B,)sin(2g + 2h + 21)
2 3 2 2 1 1P g
S b, D 26,2 75 2 75 4
¥ [‘ 57 Y0e' + 7 v°Ce ( "6 ¢ * 756 ° )

- :Ei-yvlazez(IZ - 23e2 + 1le")|sin 2g
256

25 4 25 2~.2 _ 2 4
+ [T?g'YGe - 1027 ¥ Ge~< (16 16e< + e™)

225 .

+ TﬁjZ—yvlaze”(l - ezi151n 4g
125 5 4 on

- 3575 Yoe (4 - e“)sin 6g
2.6

_VpTa 49 873 o, 4347 675 o abe? 5
By = (’7* e“s‘iz—e)+mV1V2—Lz—(4-56)
¥

9 YViVa 2 y 6 75 2.4
t513 ¢ @ (16 - 352e“ + 41lle* - 75e°) + GI Yvea“e
3

=13 Y2v2a2(64 - 3042 + 400e* - 25¢°)

This completes the discussion of the lunar theory. The validity of the
method has been established, and the calculations have been carried far enough

to illustrate the manipulative techniques that are required.
ARTIFICIAL SATELLITE THEORY

Development of the Hamiltonian

The primary purpose here is to demonstrate that the generalized

von Zeipel transformation can be applied directly, in a simple, degenerate
form, to artificial satellite theory. The usual assumptions about the gravi-

tational field of a triaxial ellipsoid give the Hamiltonian
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n

2 (2]
F=EE_ +vH+EDn+EZTn,m

[¢-]
21,2 n=2 n=2 m=1

where the zonal harmonics, Dp, and the tesseral harmonics, Tp p are

=)
1}

R .
-udg Ty P, (sin 6)

Rn

;EIT'(Cn,m cos mh + Sp p sin mA)an(sin 8)

Tn,m = ®

Here v 1is the spin velocity of the earth, R 1is the equatorial radius of the
earth, 6 and A are the geographical latitude and longitude (measured east
from Greenwich), J, C, and S are dimensionless constants, P is the Legendre

n
polynomial, and P ™ is the associated Legendre function

ms o2 d™Pp(Z)

P.M(z) = (1 - 2?2
(@) = ( ) o
The notation for the zonal harmonics is Brouwer's (ref. 1) and the
notation for the tesseral harmonics is Izsak's (ref. 7). As in the lunar
theory the term vH 1is added to the Hamiltonian because the longitude of the
node, h, is measured from a rotating reference line (the meridian of
Greenwich).

Orders of magnitude can be defined by introducing n, the mean motion of
the satellite, the dimensionless parameter m = v/n << 1, and the usual
assumptions {Garfinkel, ref. 8)

J, = 0(m?)
Jy = 0(J,%) , n> 2
Cn,m = O(Jzz)
Sn,m = 0(J22)
Thus,
F=F, +F; + Fp + F3 + Fy
2
"
F. = _
° 212
F1=\)H
Fp =Dy
Fz =0

Fy = sum of tesseral harmonics
and remaining zonal harmonics
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To decompose Fy by types (X, Y, Z, E)

Fi = XFi + YFy + ZF + EFy

note that, since the present Hamiltonian does not contain the time, the
definitions reduce to

X: periodic in 1
Y: periodic in g and h, independent of 1
Z: periodic in g, independent of 7 and h

E: independent of all three angle variables

Following Brouwer (ref. 1),

introduce I, the mean anomaly, implic-
itly via f, the true anomaly, by means

of the formulas

G2/u
1 +ecos f

sin 6 = sin I sin(f + g)

Then the Legendre polynomials become
trigonometric polynomials in f + g.
For example,

P,(sin 8) = %—sin2 8 - %-= %-(l - 3 cos? I) - —i—-sin2 I cos(2f + 2g)
P3(sin 8) = %—sin3 6 - %-sin 8

= g-sin I(1 - 5 cos? I)sin(f + g) - g-sin3 I sin(3f + 3g)

P, (sin 6) %E-sinL+ o - %?-sinz 6 + %

= é%-(S - 30 cos? I + 35 cos™ I)

- T%—sin2 I(1 - 7 cos? I)cos(2f+2g) + g%-sinL+ I cos(4f + 4g)

22



and the associated Legendre functions can be treated similarly, since

d™P, (sin 6)

P.™(sin 8) = cos™
n ( ) d(sin 6)™
Thus, for example,
Pzz(sin 9) = 3 cos? @
Lo s _ 15 . o . 3\_3 ” .
P3*(sin 8) = cos © —- sin® 0 -35) = 7 cos 8[3-5 cos* I-5 sin® I cos(2f+ 2g)]
P32(sin 8) = 15 cos? 6 sin 6 = 15 cos? 6 sin I sin(f + g)
3res - 3
P3°(sin 6) = 15 cos” ©

The factor cos™ 6 will disappear by cancellation once the longitudinal
factors have been obtained. To show this, use the trigonometric formulas
(ref. 9)

w=A-nh

sin(f + g)cos I

in -
sih w cos ©
c
cos w = Sos(f + g)
cos 6
to obtain
sin A = &1 sin h + sy cos h
cos 6
cos ) = &1 cos h - s; sinh
cos 6
¢y = cos(f + g)
S) = cos I sin(f + g)

and hence, by induction,
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¢cp sinmh + sy cosmh

sin mA =
cos™ ©
cp cosmh - sy, sinmh
m
cos mhA =
cos™m ¢
c = cC - S S
m+1 m®L m> 1
Sm_'_1 = CpSp + SmC1

so that, for example,

cy = %—sin2 I+ %—(1 + cos? I)cos(2f + 2g)

s = cos I sin(2f + 2g)

3 sin2 1 cos(f + g) + %—(1 + 3 cos? I)cos(3f + 3g)

)

€3

Sy = %—sin2 I cos I sin(f + g) + %—(3 + cos? I)cos I sin(3f + 3g)

These yield the desired expressions for the tesseral harmonics, typical
examples being

2
T = 3u Bg' (C, , cos 2h+8S, , sin 2h)[% sin? I-r%-(l-rcosz I)cos(Zfa-Zgﬂ
T > 2

2,2

+ (82,2 cos 2h - C, , sin 2h)cos I sin(2f + 2g)}

3
T3,1 = 5w 1;-; [(C3,1 cos h + S; ; sin h)cos(f + g)

+

(S5 cos h - C; ; sin h)cos I sin(f + g)]
x [3 -5 cos? I -5 sin? I cos(2f + 2g)]

Thus, both zonal and tesseral harmonics can be expressed as trigonometric
polynomials in f + g, multiplied by negative powers of r, and the coeffi-
cients are functions of I and h. To effect the decomposition by types,
introduce the mean values with respect to 7 (Brouwer, ref. 1):
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=
1}

= 1
n,m ﬂf Tn,m dz

so that the components of type X are simply

XD, = D - D

XT

n,m Tn,m - Tn,m

Perform the integrations by changing to the true anomaly, £, as the
variable of integration, using the formulas

ar = ¥ g, po G/
GL3 ’ 1 +ecos f

Then the negative powers of r become positive powers of 1 + e cos f, and
the integrands become trigonometric polynomials in f.

The zonal harmonics have no components of type Y, and the tesseral
harmonics have no components of type Z or E. Hence,

D

ZD, + ED

Toom = YTn,m

and the separation of Bh is done by inspection. Typical results are:

2 2
Fo = -nd, %g-Pz(sin 8) = %—qu B5—[3 cos?2 I -1 + 3 sin? I cos(2f + 2g)]
T
- bn2
EF, = Fp = %—Jz 23%3-(3 cos? I - 1)

YFZ = ZF2 = 0, XF2 = FZ - EFZ

The third zonal harmonic yields

u5R3e
G°L3

ZDy = Dy = %-J3 sin I(5 cos® I - 1)sin g
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YD3 = ED3 = O, XDy = D3 - ZDg

and the fourth gives

_ 15 pbr%e?2 . o
D, = EZ-JQ 6715———51n I(1 - 7 cos® I)cos 2g
ED, = - ii_J EEBE_ 1 + é.eZ (3 - 30 cos?2 I + 35 cos" I)
BT T8RN s 2

YDq = 0, XDq = Dq - (ZDq + EDq)

The first two tesseral harmonics give

_ é UHRZ
2

¢33

sin? I(Cz, cos 2h + Sy » sin 2h)

XTp,20 = Ty,2 - YT 2

and

u5R3e
GoL3

YT3,1 = g— [(C3,1 cos h + S3,1 sin h)(1 - 5 cos? I)cos g

+ (83,1 cos h - C3 ;3 sin h)(11 - 15 cos? I)sin g]
It is clear that every harmonic can be decomposed in this fashion.

Solution of the Artificial Satellite Problem

Initial stages.- The generalized von Zeipel procedure gives, for the
first three stages, essentially the first-order results obtained by Brouwer

(ref. 1).

and, as in the lunar theory, X; = 0. The second-order equation is

E2 = XF2 + EFZ - 53-57—-+ \V] EH_
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Separating and integrating gives
Y, =0
_ 1 p*R? H?2

3 3
x2=1‘E XFo dz=;iz—(fF2 dZ-Ezz)
U

2n2
= l—JZ u7R {(3 cos?2 I - 1)(f -1 + e sin f)

4 G3

+ 3 sin? 1[% sin(2f + 2g) + 5 e sin(f + 2g) + £ e sin(3f + 2gﬂ}

The general case, order k > 3.- Since the quantities X and y of the
lunar theory do not occur in the satellite problem, the von Zeipel equations
do not suffer any loss of order due to differentiation. Hence, the general
equation becomes

B }i Xy . BYk_l . oF , 321(—2 . Q
k = Y oh 3G og K

where Qg 1is a sum of known terms. The component Z; _, is obtained from

dEF, 23Z
2 k-2 _
that 1is,
oz
3 u“R2 2 k-2 _
I J2 W (5 COS I - 1) ag = ZQ-k

which can be integrated by quadrature. The general equation then becomes

2 X oY oXF, 9Z
S . k-1 2 9%k-2 -7
Ex 332 "V T Y36 g Qe - 2
which separates into three:
w2 g X, + 8XF, 371 _,
3 0L Tk T TIG og
Y
k-1 _
S RN *
Ey = EQy

Notice that the partial differential equations of lunar theory have
degenerated to ordinary equations here.
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Equatlons of order 3 and 4.- The third-order equation is completely
degenerate since the known terms are

=0

X oF aX Y aF, aX 32Fy 98X, oX
Q3 = F3 + v 2, 2 ( 1, 1) + 2 I o 1 2
3h 3G og og oL 3l 312 EYAREY/
giving
Ey =X3 =Yy =27 =0

For the fourth-order equation the known terms are

2
2
o - F, - oF, 3X, 9F, 9X, 1 3°Fo (X,
v T Fu T SL 3T T §G dg | 2 5p2 \8l

Since this expression is quite lengthy the components of type X will not be
exhibited. The zonal harmonics give the components of types Z and E which
yield Brouwer's results (ref. 1)

1 p2rZ2e? sin? I [ 5
Zo = == Jo(1 - 15 cos” I)
273273 Ss5cos?1-1 L7
SJq 2 ] . 1 J3 uRe .
+ 7 (1 - 7 cos= I)|sin 2g - E-jz-—ﬁ—-51n I cosg

bph 2
Ey = _§__J22 WRTIG (5 cos* I - 18 cos? I + 5)
128 G7L3 LZ

+ 4 %—(3 cos?2 I - 1)2 + 5(7 cos* I + 2 cos? I - lﬂ

3 UGRH G2 i 2
+ TE_'J” E7E§ <5-EE - 5)(35 cos* I - 30 cos“ I + 3)

The first two tesseral harmonics yield the typical contribution to Yj:

3 u4R2 . _
Y3 = - Z.VG3L3 sin? I(CZ,Z sin 2h - 52’2 cos 2h)
3 u5R3e 2 .
¥ 8 yGoL3 [(5 cos® I - 1)cos g(C3,1 sin h - S3 ; cos h)

+ (15 cos? I - 11)sin g(S3,1 sin h + C3’1 cos h)]

Again, the development can be terminated with the remark that the
validity of the method has been established, provided the critical inclination

is avoided.
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CONCLUDING REMARKS

The generalized von Zeipel transformation presented here is clearly
capable of producing a highly efficient lunar theory. The major simplifica-
tion resides in the partial uncoupling of solar and lunar factors. This
occurs in the initial development of the Hamiltonian and in the final develop-
ment of the determining function. At both stages many Fourier series expan-
sions are avoided, the result being a product of two finite expressions. This
is achieved primarily because the elimination of the short period terms is
effected by solving an ordinary differential equation, in which solar factors
play the role of constants.

If the inclination angle is not restricted to small values, the same
technique can be applied to eliminate the terms of types X and Y, with terms
of type Z remaining in the new Hamiltonian. The resulting system might well
be a fruitful subject for future research.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., July 24, 1969
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APPENDIX
EXPLICIT RECURSIVE ALGORITHMS FOR THE VON ZEIPEL TRANSFORMATION

The basic, implicit equations of the von Zeipel transformation are

3S(q, ¥)
Byi

3S(q, y)
pi yi * aqi

s = g. +
1 ql

where, for present purposes, the dependence on t, via A, is irrelevant. Let
¢(x, y) be an arbitrary function and let

¥(q, p) = ¢(x, y)

That is, this is an identity in either set of variables under the transforma-
tion (x, y) <> (g, p). Eliminating p in the left member and x in the
right member gives

vl [+ 2520} = offos - 22 00]. )

an identity in (q, y). Expanding each member in Taylor's series gives

[e]

1 akw (q. L) 3s 39S 3S
w(q, Y) + _' ] ; _7-7?‘ - . . . . A
o k! ayil BYiZ- . . Bylk aqll 8q12 aqlk
= ¢(q, y) + 1 3k¢(g,,y17_A‘ 3S 23S 55
s e k! 3qi1 Sqiz e 3Qik 3yi1 Byi2 ayik
with the repeated subscripts i;, i,, . . ., i) satisfying the summation

convention. Since this is an identity in the variables. (q, y), the variables
are dummies, and can be replaced by (q, p) or by (x, y). Introducing the

series expansion
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= :?: Sh

n=1
and collecting terms of equal order gives, with (q, y) replaced by (q, p):

bola, P) = ¢5(q, P)

and, for n > 1,

n
¥nle> P) +E“1‘Z ~ 2Muy(g, p) %50, (4, P) PSay (@, P)
n+t? k! dp: 9P. . . . OP: 9q= o 94
— - Pll P12 plk q11 qlk
2494 (2, P) 98y (g, p) 9Say (q, P)
= o (@, P)+ k'§ :aq 39 30 %p- - ap;
- iy ", 0o Ty 11 1k
where 2: denotes the sum over all combinations of o, aj, ap, . . ., O
a
satisfying
o > 0, a. > 1
J
k
o + E Cy.j =1
j=1

This can be put in the explicit form

Z )IDINNED DI
k! Bpl op iz e api qul ot aqik

a1=1 a,=1 0 =1 k

515 25 D > PN Sy
1 . . .
k Bql a . PN aqik apil Bpik

93
0;=1 ap=l ap=1 2

where
ry =n+1-k

T. =r. - a; +1 for 3 =1, 2, . . ., k-1
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Thus, for example,

b, = %
8y, 85, 3¢y 35,
wl v = ¢ v
api qu 1 qu Bpi
. 3y 95, . 3y 3S, ! 3%hy 35 35,
2 op; 993 op; qu 2 9p; Bpj Bql qu
3¢; 9S; 3¢, 9S
= 92 * 59 3p; * Sq. p.
qi 9Pi q; °Pji

and so forth, a recursive system.
¥n(q, p) are obtained recursively.

Thus, if ¢n(x, y) are given, then
Similarly, if these same equations are

written with (x, y) in place of (q, p), then ¢,(x, y) can be obtained
The equations for transforming the

variables (x, y) and (q, p), in either direction, now follow immediately as

recursively when y,(q, p) are given.

special cases, by taking, successively

¢O(X’ Y) = XB, )

o
oo (X5 ¥) = yg» ¢y
WO(Q: P) = qu wa
¢o(q’ p) = PB, wa
The results are
Xg =
n=0
where
qB,o =
qB,l =
and, for n > 2,
n-1 t tk
_ 98 1
9% .n ~ 9pg k_'z T
k=1 ay=1 o) =1

32

=0 for o # 0
=0 for o # 0
=0 for o #0
=0 for a # 0
qB,n
9
35,
BpB

k

9 qB,a o aSal
apil .. Bpik aqi




where
ti =n -k
tj+1 = tj - aj + 1 for j =1, 2, , k -
o=t - o * 1
Thus, for example,
_ 88 _%dg,: 38,
qB,Z aps apl 9q;
2
“ - 38, 3qg , 35, ) g , 38, ) l_a g, ?S, 38
B3 BpB Ip; 9qy 9p; 9q; 2 9p; Bpj 9q; 9q

and so forth, where Sy = Sk(q, P).

The transformation equation for y 1is

Yo = § : p
8 n=0 8,n

where
PB,o = PB
85,
P = - a3
B,1 94
and, for n = 2,
-1 Ty Tk K
D I DR D T ERRE
g,n k! T op; - - 9p;, 9q; quk
=1 o=1 ak—l 1 1
Thus, for example,
38, 9Pg ; 35,
Pe,2 7 " 3q, T Top; dq;
P _ 3S, Pg 1 98, _ aPB 2 35, 1 Pg , 98 1
B,3 qu 9p; 995 p; 3q; 2 3p apj 9q; qu

and so forth, again with Sy = S;(q, p).



The reverse transformation is

where
*g,0 = *8
5S;
X = - —
1 3
B, Vg
and, for n > 2,
-1 Ty Ty k
D D D e
B,n k! Tt 0x dx3, Oy 3y
=1  ai=l o =1 1 k 72 Tk

3S 0Xg 1 38,

2
X = ~ -
B,2 ByB 9x; ayi
3 3 82
N Xg,1 39Sy  °Xg,p 35, 1 °¥g,; 35, 35,
B,3 ayB 9x; Yy 9xj  3y; 2 3x; axj 3y 5 ayj

and so forth, where now S = Sk (x, y).

Finally, the transformation equation for p 1is

be= Dy
B n=0 B,n

where
yB,o - yB
38,
Yo 1 T 3%
B, xB

and, for n > 2,
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3Sn 1
Yg,n = Eig" kT :
k —_

k
Ve o 3Sa, 30y

Bxik ayi

2
352 ByB,l S1
ys,z ox 9Xi 8yi
2
_ 883 gy 85, ] g 5 88 i 12Yg,1 35; 38,
Yg,3 = d9Xg dx; dy; 9X; dy; 2 9xy axj Ay 5 ayj

and so forth, again with § =

Sk (x, y).

It may be noted that the authors of recent papers on the Lie transforma-
tion (refs. 10 and 11) have remarked that the von Zeipel transformation is

unsatisfactory because of its implicit nature.

Such remarks are no longer

valid in view of the present explicit algorithms for effecting the transforma-
tion of coordinates and of arbitrary functions in either direction.
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